ĐÁNH 1. TIẾP TUYỂN TẠI MỘT DIỆM THUỘC ĐO THỊ

Câu 1: [DVH]. Cho hàm số \(y = \frac{2x}{x-2} \), có độ thi (C). Viết phương trình tiếp tuyến của (C) tại các giao điểm của (C) với đường thẳng \(y = 3x-3 \).

Câu 2: [DVH]. Cho hàm số \(y = 2x^3 - 2x^2 + 5 \), có độ thi (C). Tìm \(M \in (C) \) sao cho tiếp tuyến với (C) tại \(M \) vuông góc với đường thẳng \(x + 2y - 6 = 0 \).

Câu 3: [DVH]. Cho hàm số \(y = x^4 - 4x^2 \) (C). Tìm \(M \in (C) \) sao cho tiếp tuyến với (C) tại \(M \) đi qua điểm \(A(0;1) \).

Câu 4: [DVH]. Cho hàm số \(y = \frac{6x+5}{x+1} \) (C). Tìm \(M \) thuộc (C) sao cho tiếp tuyến qua \(M \) cắt \(Ox \) và \(Oy \) lần lượt tại \(A \) và \(B \) sao cho \(OA = 4OB \).

Câu 5: [DVH]. Cho hàm số \(y = x^3 - 3(m+1)x^2 + 4x - m + 1 \) (Cm). Gọi \(\Delta \) là tiếp tuyến của (Cm) tại giao điểm của (Cm) với trực từng. Viết phương trình \(\Delta \) biết khoảng cách từ \(A(2;-1) \) đến \(\Delta \) bằng \(\sqrt{34} \).

Câu 6: [DVH]. Cho hàm số \(y = \frac{3x+1}{x-1} \), có độ thi (C). Viết phương trình tiếp tuyến của (C) tại điểm \(x_0 \) biết \(x_0 \) là nghiệm của phương trình \(y^* + y - 15 = 0 \).

Câu 7: [DVH]. Cho hàm số \(y = x^4 - 2(2m+1)x^3 - m - 1 \) (Cm). Gọi \(A \) là điểm có hoành độ dương mà (Cm) luôn đi qua với mọi \(m \). Viết phương trình tiếp của hàm số tại \(A \) khi \(m = 1 \).

Câu 8: [DVH]. Cho hàm số: \(y = \frac{x-2}{x+1} \) (C). Viết phương trình tiếp tuyến của (C) tại.
 a) Giao điểm của (C) với trực hoành.
 b) Giao điểm của (C) với trực từng.

Câu 9: [DVH]. Cho hàm số \(y = x^4 - 4x^2 + 1 \) (C). Viết phương trình tiếp tuyến của (C) tại điểm \(x_0 \) thỏa mãn điều kiện \(y''(x_0) = 4 \).

Câu 10: [DVH]. Cho hàm số: \(y = x^3 + x^2 - x + 2 \) (C).
 a) Tìm toa độ giao điểm của (C) và trực Ox.
 b) Viết phương trình tiếp tuyến của (C) tại các giao điểm đó.

Câu 11: [DVH]. Cho hàm số \(y = \frac{1}{2}x^2 -(m+1)x^2 + m - 2 \), có độ thi (Cm). Tìm \(m \) để tiếp tuyến của (Cm) tại điểm có hoành độ \(x = -2 \) đi qua gốc toa độ O.

Câu 12: [DVH]. Cho hàm số \(y = \frac{2x-1}{x+2} \) (C). Gọi I là giao điểm 2 điểm căn của hàm số. Viết phương trình tiếp tuyến của (C) qua \(M \in (C) \) biết \(IM = \frac{\sqrt{5}}{2} IO \) và \(M \) có hoành độ dương.
LÒI GIẢI BÀI TẬP

Câu 1: [DVH]. Cho hàm số \(y = \frac{2x}{x-2} \), có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại các giao điểm của (C) với đường thẳng \(y = 3x-3 \).

Lời giải:

Phương trình giao điểm 2 đồ thị là \(\frac{2x}{x-2} = 3x-3 \iff 2x = (x-2)(3x-3) \iff 3x^2 - 11x + 6 = 0 \)

\[\begin{cases} x = \frac{2}{3} \Rightarrow M \left(\frac{2}{3}; -1 \right) \\ x = 3 \Rightarrow M (3; 3) \end{cases} \]

Với \(y = \frac{2x}{x-2} \Rightarrow y' = -\frac{4}{(x-2)^2} \Rightarrow \begin{align*} y'(\frac{2}{3}) &= -\frac{9}{4} \\ y'(3) &= -4 \end{align*} \)

Phương trình tiếp tuyến tại điểm \(M \left(\frac{2}{3}; -1 \right) \) là \(y = -\frac{9}{4} \left(x - \frac{2}{3}\right) - 1 = -\frac{9}{4}x + \frac{1}{2} \).

Phương trình tiếp tuyến tại điểm \(M (3; 3) \) là \(y = -4(x - 3) + 3 = -4x + 15 \).

Câu 2: [DVH]. Cho hàm số \(y = 2x^3 - 2x^2 + 5 \), có đồ thị (C). Tìm \(M \in (C) \) sao cho tiếp tuyến với (C) tại \(M \) vuông góc với đường thẳng \(x + 2y - 6 = 0 \).

Lời giải:

Gọi \(M \left(m; 2m^2 - 2m^2 + 5 \right) \).

\(y = 2x^3 - 2x^2 + 5 \Rightarrow y' = 6x^2 - 4x \Rightarrow \) phương trình tiếp tuyến tại M có hệ số góc \(k = 6m^2 - 4m \).

Phương trình tiếp tuyến vuông góc với đường thẳng \(x + 2y - 6 = 0 \) hay \(y = -\frac{x}{2} + 3 \nên \(6m^2 - 4m = 2 \)

\(\iff 6m^2 - 4m - 2 = 0 \iff \begin{cases} m = 1 \Rightarrow M (1; 5) \\ m = -\frac{1}{3} \Rightarrow M \left(-\frac{1}{3}; \frac{127}{27} \right) \end{cases} \)

Câu 3: [DVH]. Cho hàm số \(y = x^4 - 4x^2 \) (C). Tìm \(M \in (C) \) sao cho tiếp tuyến với (C) tại \(M \) đi qua điểm A(0;1).

Lời giải:

Gọi \(M \left(m; m^4 - 4m^2 \right) \).

Phương trình tiếp tuyến qua M có dạng: \(y = y_m(x - m) + m^4 - 4m^2 = (4m^3 - 8m)(x - m) + m^4 - 4m^2 \).

Tiếp tuyến qua A(0;1) nên \(1 = (4m^3 - 8m)(0 - m) + m^4 - 4m^2 \iff 3m^4 - 4m^2 + 1 = 0 \iff \begin{cases} m^2 = \frac{1}{3} \\ m^2 = \frac{1}{3} \end{cases} \)

\(\iff \begin{cases} m = \pm 1 \Rightarrow M (\pm 1; -3) \\ m = \pm \frac{1}{\sqrt{3}} \Rightarrow M \left(\pm \frac{1}{\sqrt{3}}; -\frac{11}{9} \right) \end{cases} \)

Câu 4: [DVH]. Cho hàm số \(y = \frac{6x + 5}{x + 1} \) (C). Tìm \(M \) thuộc (C) sao cho tiếp tuyến qua M cắt Ox và Oy lần lượt tại A và B sao cho \(OA = 4OB \).
Lời giải:
Ta có \(y = \frac{6x + 5}{x + 1} \Rightarrow y' = \frac{1}{(x+1)^2} \).

Gọi \(M \left(\frac{6m + 5}{m + 1} \right) \) là điểm thuộc độ thị cần tìm.

Phương trình tiếp tuyến tại \(M \left(\frac{6m + 5}{m + 1} \right) \) có dạng \(y = \frac{1}{(m+1)^2} (x-m) + \frac{6m+5}{m+1} \).

Phương trình giao điểm với \(Ox: \) \[
\frac{1}{(m+1)^2} (x-m) + \frac{6m+5}{m+1} = 0
\]
\(\Leftrightarrow \begin{cases}
y = 0 \\
x = -6m^2 - 10m - 5 \Rightarrow A(6m^2 + 10m + 5; 0)
\end{cases}
\]

Phương trình giao điểm với \(Oy: \)
\[
y - \left(\frac{0-m}{m+1} \right)^2 + \frac{6m + 5}{m+1} = \frac{6m^2 + 10m + 5}{(m+1)^2} \Rightarrow B \left(\frac{6m^2 + 10m + 5}{(m+1)^2} \right).
\]

Theo bài \(OA = 4OB \Rightarrow |6m^2 + 10m + 5| = 4. \left[\frac{6m^2 + 10m + 5}{(m+1)^2} \right] \Rightarrow 6m^2 + 10m + 5 = 0 \) (vo nghiệm)

\(\begin{bmatrix} m = 1 \Rightarrow M \left(\frac{11}{2} \right) \\
\end{bmatrix}
\]
\(\begin{bmatrix} m = -3 \Rightarrow M \left(-\frac{13}{2} \right)
\end{bmatrix}
\)

Câu 5: [DVH]. Cho hàm số \(y = x^3 - 3(m+1)x^2 + 4x - m + 1 \) \((C_m)\). Gọi \(\Delta \) là tiếp tuyến của \((C_m)\) tại giao điểm của \((C_m)\) với trực tùng. Viết phương trình \(\Delta \) biết khoảng cách từ \(A(2; -1) \) đến \(\Delta \) bằng \(\sqrt{34} \).

Lời giải:
\(x = 0 \Rightarrow y = 1 - m \) suy ra \(B(0;1-m) \) là giao điểm của \((C_m)\) với trực tùng.

Ta có: \(y' = 3x^2 - 6x(m+1) + 4 \Rightarrow y'(0) = 4 \) suy ra phương trình tiếp tuyến của \((C_m)\) đi qua \(B \) là:
\(\Delta: y - (1-m) = 4(x-0) \Leftrightarrow 4x - y + 1 - m = 0 \)
\(\Rightarrow d(A;\Delta) = \sqrt{\frac{4^2 + (-1)^2}{4^2 + (-1)^2}} = \sqrt{34} \Rightarrow |m+6| = 17\sqrt{2} \Leftrightarrow \begin{bmatrix} m = -6 + 17\sqrt{2} \\
\end{bmatrix}
\]
Vậy phương trình tiếp tuyến cần tìm là: \(4x - y + 7 - 17\sqrt{2} = 0 \) hoặc \(4x - y + 7 + 17\sqrt{2} = 0 \).

Câu 6: [DVH]. Cho hàm số \(y = \frac{3x + 1}{x - 1} \), có đồ thị \((C)\). Viết phương trình tiếp tuyến của \((C)\) tại điểm \(x_0 \) biết \(x_0 \) là nghiệm của phương trình \(y'^2 + y - 15 = 0 \).

Lời giải:
Ta có: \(y = 3 + \frac{4}{x-1} \Rightarrow y' = -\frac{4}{(x-1)^2} \Rightarrow y'' = \frac{8}{(x-1)^3} \)

Ta có: \(y'^2 + y - 15 = 0 \Leftrightarrow \frac{8}{(x-1)^3} + 3 + \frac{4}{x-1} - 15 = 0 \Leftrightarrow \frac{4}{(x-1)^3} + 2 - 6 = 0 \Leftrightarrow x = 2 \)

Ta có: \(y(2) = 7, \ y'(2) = -4 \) suy ra phương trình tiếp tuyến cần tìm là:
Câu 7: [DVH]. Cho hàm số \(y = x^4 - 2(2m+1)x^2 - m - 1 \) \((C_m) \). Gọi \(A \) là điểm có hoành độ đường mà \((C_m) \) luôn đi qua với mọi \(m \). Viết phương trình tiếp của hàm số tại \(A \) khi \(m = 1 \).

Lời giải:

Ta có: \(y = x^4 - 2(2m+1)x^2 - m - 1 \) \(\iff y = x^4 - 2(2m+1)x^2 - m - 1 \) \(\iff y = x^4 + 2x^2 = (m+1)(4x^2 - 1) \)

Gọi \(A(x_0, y_0) \) ta có: \(\begin{cases} y_0 - x_0^4 + 2x_0^2 = 0 \\ 4x_0^2 - 1 = 0 \end{cases} \) \(\iff \begin{cases} x_0 = \frac{1}{2} \\ y_0 = -\frac{7}{16} \) (Do \(x_0 > 0 \) \(\Rightarrow A \left(\frac{1}{2}; -\frac{7}{16} \right) \))

Khi \(m = 1 \) ta có \(y = x^4 - 6x^2 - 2 \) \(\iff y' = 4x^3 - 12x \) \(\Rightarrow y' \left(\frac{1}{2} \right) = -\frac{11}{2} \)

Phương trình tiếp tuyến canh là \(y + \frac{7}{16} = -\frac{11}{2} \left(x - \frac{1}{2} \right) \) \(\iff y = -\frac{11}{2}x + \frac{37}{16} \)

Câu 8: [DVH]. Cho hàm số: \(y = \frac{x^2 - 2}{x + 1} \) \((C) \). Viết phương trình tiếp tuyến của \((C) \) tại:

a) Giao điểm của \((C) \) với trục hoành.

b) Giao điểm của \((C) \) với trục tung.

Lời giải:

Ta có: \(y' = \frac{3}{(x+1)^2} \)

a) Phương trình trục hoành là: \(y = 0 \). Do đó \(y_0 = 0 \Rightarrow x_0 = 2 \). Khi đó: \(y'(x_0) = \frac{3}{(x_0+1)^2} = \frac{1}{3} \)

Do đó phương trình tiếp tuyến là: \(y = \frac{1}{3}(x - 2) + 0 = \frac{1}{3}(x - 2) \).

b) Phương trình trục tung là: \(x = 0 \). Do đó \(x_0 = 0 \Rightarrow y_0 = -2 \). Khi đó: \(y'(x_0) = \frac{3}{(x_0+1)^2} = 3 \)

Do đó phương trình tiếp tuyến là: \(y = 3(x - 0) - 2 \) hay \(y = 3x - 2 \).

Câu 9: [DVH]. Cho hàm số \(y = x^4 - 4x^2 + 1 \) \((C) \). Viết phương trình tiếp tuyến của \((C) \) tại điểm \(x_0 \) thỏa mãn điều kiện \(y''(x_0) = 4 \).

Lời giải:

Ta có: \(y' = 4x^3 - 8x \) suy ra \(y'' = 12x^2 - 8 \).

Do đó: \(y''(x_0) = 12x_0^2 - 8 = 4 \Leftrightarrow x_0^2 = 1 \Leftrightarrow x_0 = \pm 1 \).

Xét 2 trường hợp:

+) Với \(x_0 = 1 \Rightarrow y_0 = -2; y'(x_0) = 4x_0^3 - 8x_0 = -4 \). Do vậy phương trình tiếp tuyến là: \(y = -4(x - 1) - 2 \) Hay \(y = -4x + 2 \).

+) Với \(x_0 = -1 \Rightarrow y_0 = -2; y'(x_0) = 4x_0^3 - 8x_0 = 4 \). Do vậy phương trình tiếp tuyến là: \(y = 4(x + 1) - 2 \) Hay \(y = 4x + 2 \).

Vậy có 2 phương trình tiếp tuyến cần tìm là: \(y = -4x + 2 \) và \(y = 4x + 2 \).

Câu 10: [DVH]. Cho hàm số: \(y = x^2 + x^2 - x + 2 \) \((C) \).
Chương trình Luyện thi PRO–E: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!

Khóa học LUYỆN THI THPTQG 2016 – Thầy Đặng Việt Hùng

Facebook: Lyhung95

a) Tìm toa độ giao điểm của (C) và trục Ox.

b) Viết phương trình tiếp tuyến của (C) tại các giao điểm đó.

Lời giải:

a) Phương trình hoành độ giao điểm của (C) và trục Ox là: \(x^3 + x^2 - x + 2 = 0 \)

\(\Leftrightarrow (x+2)(x^2-x+1)=0 \Leftrightarrow x=-2. \) Vây toa độ giao điểm của (C) và trục Ox là A(−2; 0).

b) Phương trình tiếp tuyến có dạng: \(y = f'(x_0)(x-x_0) + y_0. \)

Trong đó ta có: \(x_0 = -2; y_0 = 0. \)

\(f'(x) = 3x^2 + 2x - 1 \Rightarrow f'(-2) = 7. \)

Vậy phương trình tiếp tuyến là: \(y = 7(x - 2). \)

Câu 11: [DVH]. Cho hàm số \(y = \frac{1}{2} x^4 - (m+1)x^2 + m - 2, \) có độ thi (C_m). Tìm m để tiếp tuyến của (C_m) tại điểm có hoành độ \(x = -2 \) đi qua góc toa độ O.

Lời giải:

+) TXD: \(D = \mathbb{R} \). Ta có \(y' = 2x^3 - 2(m+1)x. \)

+) Tiếp tuyến của (C_m) tại điểm M(−2; −3m + 2) có hệ số góc là \(k = y'(-2) = 4m - 20. \)

Khi đó, phương trình tiếp tuyến d tại M là \(y = (4m - 20)(x + 2) - 3m + 2. \)

+) Vì d đi qua góc toa độ O nên \(0 = 2(4m - 20) - 3m + 2 \Leftrightarrow 5m - 38 = 0 \Leftrightarrow m = \frac{38}{5} \).

Vậy \(m = \frac{38}{5} \) là giá trị cần tìm.

Câu 12: [DVH]. Cho hàm số \(y = \frac{2x-1}{x+2} (C) \). Gọi I là giao điểm 2 tiếp cận của hàm số. Viết phương trình tiếp tuyến của (C) qua M \(\in (C) \) biết \(IM = \frac{\sqrt{5}}{2} IO \) và M có hoành độ dương.

Lời giải:

Ta có tiếp cận dùng của (C) là \(x = -2, \) tiếp cận ngang của (C) là y = 2

Suy ra \(I(-2; 2) \Leftrightarrow IO^2 = 8. \)

Gọi \(M \left(m; \frac{2m-1}{m+2} \right) \). Ta có \(IM = \frac{\sqrt{5}}{2} IO \Rightarrow IM^2 = \frac{5}{4} IO^2 = 10 \)

\(\Rightarrow (m + 2)^2 + \left(\frac{2m-1}{m+2} - 2 \right)^2 = 10 \Rightarrow (m + 2)^2 + \left(\frac{-5}{m+2} \right)^2 = 10 \Leftrightarrow (m + 2)^2 = 5 \Rightarrow m = -2 + \sqrt{5} \)

(do \(x_m > 0 \))

Ta có \(y = 2 - \frac{5}{x+2} \Rightarrow y' = \frac{5}{(x+2)^2} \Rightarrow y'(-2 + \sqrt{5}) = 1 \)

Suy ra phương trình tiếp cận tìm là:

\(y = \frac{2(-2 + \sqrt{5}) - 1}{\sqrt{5}} = x - (-2 + \sqrt{5}) \Leftrightarrow y - (2 - \sqrt{5}) = x + 2 - \sqrt{5} \Leftrightarrow y = x + 4 - 2\sqrt{5} \)
| CHƯƠNG TRÌNH **PRO – S**
(Dành cho h/s luyện thi từ 7 – 10 điểm) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>① Khóa LUYỆN THI THPTQG 2016 – B1</td>
</tr>
<tr>
<td>② Khóa LUYỆN ĐỀ THPTQG 2016 – T1</td>
</tr>
<tr>
<td>③ Khóa LUYỆN GIẢI BÀI TẬP TOÁN</td>
</tr>
<tr>
<td>Học phí trọn gói: 900.000 VND</td>
</tr>
</tbody>
</table>

| CHƯƠNG TRÌNH **PRO – E**
(Dành cho h/s luyện thi từ 5 – 8 điểm) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>① Khóa LUYỆN THI THPTQG 2016 – B2</td>
</tr>
<tr>
<td>② Khóa LUYỆN ĐỀ THPTQG 2016 – T2</td>
</tr>
<tr>
<td>Học phí trọn gói: 800.000 VND</td>
</tr>
</tbody>
</table>

GIAI PHÁP CHO KÌ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2016 TRÊN MOON.VN

Chương trình Luyện thi **PRO–E**: Giải pháp tối ưu nhất cho kì thi THPT Quốc Gia 2016!